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- Introduction

On the 25th of January, 1990 a severe storm hit Great
Britain causing over a billion dollars in damage as well as
dozen of deaths. This storm is of interest due to its great
destruction but also for some scientific reasons. In 24
hours, the storm deepened more than 30 mb and thus can be
considered a bomb, Sanders and Gyakum (1980). Despite rapid
development and movement that would normally be difficult to
predict, the European Centre predicted the storm 5 days in
advance very well. The European Forecasts 3 and 4 days in
advance were not as good as their previous 5 day forecast,
and their 2 day forecast was even less skillful. NMC’s
global model did not do well prior to 84 hours in advance of
the storm, however, NMC’s forecasts for 12 to 84 hours in
advance were consistently excellent every 12 hours. The
British global forecast 48 hours in advance was not very
good, similar to the European 48 hour forecast, while all

three centers did fairly well 24 hours in advance.

This paper shows NMC final analyses for 1200 GMT, 25
January, 1990, the time of the great storm, as well as a
sequence of previous maps indicating how the storm
developed. Next we examine how different global models
performed at predicting the storm. Then we show that when
the middle atmospheric depression or vortex was over the
United States our analyses did not have heights as low as

nor a circulation as strong, as shown by radiosonde data.



However, when the system got over the Atlantic, NMC’s

forecast skill improved.

The Observed Storm and its Development

For 1200 GMT 25 January, 1990, Fig. la shows 1000 mb heights
derived from rhomboidal 40 resolution spectral coefficients
from the NMC final analysis, Dey and Morone (1985). Figure
1b shows the same except at 500 mb. The 1000 mb map shows a
very deep low with a very tight height gradient over
southern England. At 500 mb we see a modest depression
imbedded in a strong westerly flow. Figures 2a and 2b show
1000 mb and 850 mb wind speeds from the same NMC analysis as
above. With a large scale global analysis showing 30 m/sec
winds at 1000 mb and 40 m/sec at 850 mb, it would not be
surprising that instantaneous gusts of wind could be

stronger yet and very destructive.

Twelve hours earlier than the above time, Figs. 3a and 3b
show respectively NMC’s final analysis 1000 mb and 500 mb
heights. At a little north of 50° and about 15° west, the
1000 mb map shows a surface low that will deepen 150 meters
in the next 12 hours. At 500 mb, we see a short wave west
of the surface low. This wave imbedded in strong westerlies
will have strong differential vorticity advection which will

help the surface low deepen further.



At 1200 GMT 24 January, 1990, Figs. 4a and 4b show NMC’s
1000 mb and 500 mb height analyses respectively. Now the
surface low is at roughly 50° North and 35° West. In the
next 24 hours the surface low will move half way across the
Atlantic and deepen 330 meters, a bomb. At this time, the
500 mb map indicates a wave west of the surface low at about

50° West.

Figures 5a and 5b show similar maps 12 hours earlier valid

0000 GMT 24 January, 1990. The 1000 mb height at the center
of surface low is about 90 meters higher than 12 hours later
in time. Again the 500 mb wave is still west of the surface

low.

Twelve hours earlier, Figs. 6a and 6b similarly show the
surface low is weaker centered-at roughly 65°W and 45°N.

The wave at 500 mb is now roughly at 70°Ww. While in Figs.
7a through 10b we can see the wave at 500 mb being further
west every 12 hours, however, it is difficult to see any
signs of a surface low. In Fig. 11 we see a cut-off low at
500 mb at 0000 GMT 21 January, 1990, that 12 hours later
becomes a sharp wave in the westerly flow shown in Fig. 10b.
In section 4 of this papér, we will examine in more detail

how our analysis performed with this cut-off low.



Global Forecasts of the Storm

First we examine forecasts from the European Centre for
Medium Range Fbrecasts. Note that their forecasts are sent
to NMC on a 2%° by 2%° grid at 1000 mb and 500 mb only.
Unfortunately, for what ever reason, these gridded fields
are interpreted to a 5° by 5° grid. These 5° by 5° values
are later interpreted to a 2%° by 2%° grid which is then
archived on disk for a period of 36 days. However, the
storm is large enough that such interpolations will not
degrade the results excessively. The European 6 day
forecast at 1000 mb and 500 mb is shown in Figs. 12a and 12b
respectively. These maps give some indication of a possible
storm, but the surface low is too weak and too far out to
sea. The 500 mb through has too much amplitude and again is

too far to the west.

The European 5 day forecast is similarly shown in Figs. 13a
and 13b. For the unusual storm, their 5 day 1000 mb
forecast is quite successful. It shows a deep surface low
in approximately the right location, but only 2/3 as deep as
the observed storm. The 500 mb trough is somewhat too far

to the west.

The European 4 day forecast for this storm is similarly
shown in Figs. l14a and 14b. Their 500 mb forecast is

improved over their 5 day forecast, however, the 1000 mb



forecast looks more like a trough with strong westerly winds
moving around the Icelandic low. Their 3 day 1000 mb
forecast is similar, Fig. 15, while their 2 day 1000 mb
forecast has a trough that is too weak and spread out too
much in the east-west direction, Fig. 16. Their 1 day
forecast 1000 mb, Fig. 17, looks much better but is not deep
enough, possibly due to the grid interpolations mentioned

earlier.

NMC’s forecasts of the storm are now examined. The model
used has 18 levels in the vertical, with T80 spectral
horizontal resolution, Sela (1982) and more recently Sela
(1988). Our 5% day, or 132 hour, forecasts at 1000 mb and
500 mb respectively are shown in Figs.vlsa and 18b. These
forecasts have no skill or use at indicating a storm over
England. Our 4% day, or 108 hour forecast, is shown
similarly in Figs. 19a and 19b. These indicate a

significant storm, but 30° West of the observed storm.

NMC’s first skillful forecast of the storm occurs 84 hours,
or 3% days in advance, see Figs. 20a and 20b. The 500 mb
forecast is much better, while af 1000 mb the forecast has a
deep low, -240 m versus =330 m observed. The surface
forecast has a tight height gradient in southern England but
lacks the cyclonic curvature shown in the verifying analysis

Fig. la.



NMC’s global model showed some skill at 84 hours but did not
become excellent until 72 hours in advance, see Fig. 21.
Our global model continued to produce excellent 1000 mb

forecasts every 12 hours from that time on, see Figs. 23-26.

Due to technical problems, we only received, at NMC, two
British Meteorology Office forecasts valid 1200 GMT 25
‘January, 1990, Figure 27 shows their 48 hour 1000 mb
forecast for this storm. With their 1000 mb low being 150
meters to weak. At 24 hours, their 1000 mb forecast is

improved but is roughly 90 meters too weak, Fig. 28.

Diagnostics on NMC’s Analyses

Figure 11 showed a cutoff low at 500 mb over Iowa at 0000
GMT 21 January, 1990, and now we look at how this low was
analyzed back further in time. 1In Fig. 29 a we have a map
showing 300 mb heights of NMC’s first-guess valid 0000 GMT
20 January, 1990. In addition, it shows values of height
residuals at radiosonde locations, where a residual is data
minus guess values. The cut-off low in the guess has
heights that are reasonably close to the observed values.
In Fig. 29b we show the same guess heights, but now the
residuals are based on wind values, in m/sec. If we look at
the wind residuals of the nearest 6 radiosonde reports,
roughly on an egg shaped ellipse with its longest axis in

approximately an east-west direction, we see that the data



have more cyclonic circulation then does the guess. Similar
but weaker residual patterns were also at 500 and 400 mb.
Similarly in Figs. 30a and 30b we show analysis height plus
height and wind residuals respectively. Similar to the
guess, the analysis has no significant height residuals near
the center of the cut-off low. However, the analysis still
does not appear to have as much cyclonic circulation as does
the six radiosondes surrounding it. Thus if the radiosonde
winds are accurate, we may expect the model’s guess for 1200

GMT 20 January, 1990 to have a cut-off low that is too weak.

Now we show the first-guess at 1200 GMT 20 January 1990 with
its height and height residuals at 500, 400, and 300 mb in
Figs. 31la-33b. The guess cut-off low is too weak based on
both height and wind residuals that show roughly a
geostrophic pattern. This time, the buddy check rejected
the wind data at 400 and 369 mb for Omaha, Nebraska as well
as the 300 mb winds at North Platte, Nebraska. The
operational buddy check is univariate, so thét nearby wind
residuals with a circular or cyclonic pattern appear to
differ too much with each other. Now the analysis tends to
show negative height residuals as well as a cyclonic pattern
in wind residuals from 500 to 300 mb, shown only at 400 mb

in Figs. 34a and 34b.

Not surprisingly, the guess at 0000 GMT 21 January, 1990

has cyclonic residuals as shown at 400 mb in Figs. 35a and



35b. This time the large residuals are concentrated near
the intersection of Nebraska, Iowa, and Missouri. This
time, the buddy check, in this vicinity, pitched only the
large wind residual at Omaha at 400 mb. The analysis shown
in Figs. 36a and 36b at 400 mb shows a large wind residual
at Omaha and a large height residual of -57 meters in north-

east Kansas.

. By 1200 GMT 21 January, 1990 the guess shows that the cut-
off low of previous interest has merged with the westerly
flow and now is a trough near southern Michigan. Figs. 37a
and 37b show 400 mb guess heights with height and wind
residuals. We see height residuals of -66 m at Flint,
Michigan and -58 m at Dayton, Ohio. The Flint radiosonde
shows a wind residual of 20 m/sec in a direction
geostrophically consistent with the above height residuals,
but that residual was tossed by the buddy check. The
analysis at this time does not significantly reduce the

above residuals.

By 0000 GMT 22 January, 1990 the guess heights at 500 mb
could be called a wave in the westerly flow. Figs. 38a and
38b show the 500 mb guess heights with height and wind
residuals. The 15 m/sec wind residual at 500 mb in eastern
New York was tossed by the buddy check even though the two
height residuals at roughly 70° W and 42-44°N would

geostrophically support it. The above residuals are reduced



in the analysis shown in Figs. 39a and 39b. Note that at
400 mb, the height residuals for the above two radiosondes
near 70°W were pitched in the buddy check for residuals of -
58 m and -72m, even though they support each other and are
supported by a 15 m/sec wind residual in eastern New York.
After this analysis time, the wave at 500 mb is far enough
east not to be affected significantly by the analysis use of
radiosonde data over North America. From this time oh, the
most important data for forecasting the storm over England

will be ship data and satellite temperature soundings.

NMC'’s Surface Data Usage

NMC’s surface data base has two special features. First,
NMC has a large number of surface "Bogus" observations,
which are Vaiues of pressure at mean sea level produced by
human analysts. For example, with the case of 0600 GMT 24
January, 1990, Fig. 40 gives NMC’s final analysis 1000 mb
heights with data overlaid. The many black "X" are bogus
locations, with their value of pressure in mb plotted to the
upper right of the "X". The "cross-like" objects with wind
flags are surface ship observations. The second special
feature of our surface data base is that OPC, chan Product
Center, does extensive quality control of‘the ship
observations. They can put keep or hold flags on the ship
data. Ship data that get a purge flag are removed in the OI

data preprocessor and are never seen by the analysis code.



Ship data that receive a keep flag cannot be removed by any
of the analysis quality control steps. For example, the
analysis shown in Fig. 40, is also shown in Fig. 41, but
this time the only data shown is the surface ships béfore
OPC has removed any data. One key difference in this map,
compared to Fig. 40, is at roughly 50°W and about 41°N. The
ship with south-westerly winds in this area right next to a

different ship with north-westerly winds was purged by OPC.

The ship at about 33°W and 38°N that has winds blowing
across the isobars was never seen by the analysis code
because the data preprocessor did not accept it because it
did not have a pressure report. For some possible key
reports near thé surface low, OPC had keep flags on the
pressure data. These keep flags applied to the ships at
roughly (40°W, 47°N), (39°W, 41°N), (46°W, 48°N), and (37°W,
52°N). our final analysis for this date was run
experimentally with no purge flag on the ship, mentioned
earlier, at roughly 49°W, and 41°N. Having two nearby
observations that differ significantly can cause analysis
problems, but in this case there was little change compared
to the original final analysis, even though neither ship was

removed by the quality control.

For the above analysis case, the analysis was rerun with
diagnostic printouts turned on in the vicinity of the 1000

mb surface low. 1In the actual 1000 mb analysis few of the



surrounding ship observations with keep flags were used.
The operational analysis at a given point can use up to 30
pieces of data and it is constrained to use 20 profile type
observations if they are sufficiently close in distance.
Profile observations could be radiosondes or satellite
temperature soundings. In this case at 1000 mb, the
analysis chose 20 satellite heights valid at 850 mb, 6
surface bogus, the pressure and two wind components from the
ship close by at roughly, 40°W, 47°N, and one component of
wind from a ship nearby. The 850 mb satellite height data
are derived from a preliminary 1000 mb analysis, with no
satellite sounding data, plus using the satellite
temperatures to integrate up hydrostatically to give 850 mb
heights. Thus more of the nearby ship data would affect the
preliminary 1000 mb analysis, but satellite temperatures
would still have some unreasonable impact on the final 1000
mb heights. This may seem incorrect to use 850 mb heights
derived from satellite soundings for our 1000 mb analysis,
however it has the practical benefit of reducing possible
large low-level temperature changes due to a satellite
sounding problem. Hollingsworth (personal communication)
has noted that such low-level temperature problems have

negative impact on their model.

The European Centre does not use human quality control on
ships nor does it have surface bogus. Possibly that caused

their drop in skill for 2 to 3 day forecasts of the storm of



25 January, 1990. It would be interesting to test NMC’s
data assimilation with no bogus data and no quality control

for ship observations.



Conclusions

The European Centre made an excellent 5 day forecast of the
great English storm of 25 January, 1990. Their forecast
skill decreased especially 2 days prior to the storm, and
then did well at 1 day. NMC’s forecast beyond 84 hours, for
this storm, were not useful. However at 84 hours our
forecast was good. Every 12 hours from then on, we produced
excellent forecasts of the storm. NMC received bnly 2
forecasts from the British global model for this case.

Their 48 hour forecast was not that good, similar to the
European, while the British 1 day forecast improved similar

to the European.

When the 500 mb low or wave that was important for this
storm was over the United States our analysis had both
heights not as low as the radiosonde observations as well as
a cyclonic wind circulation not as strong as in the
observations. This was clearly in part due to a univariate
buddy check that removed some wind or height observations
that appeared to have some geostrophic consistency. When
this occurs for a period of 48 hours in a data dense region,
something is wrong. Analysis of other cases indicates that
even with no buddy check problems we still can underdraw for

geostrophic data residuals. This may be a theoretical error

in the analysis. The analysis assigns radiosonde data error

levels that are due to estimated measurement errors plus



errors of representativeness. This later error takes into
account that the real world has small scale turbulence,
gravity waves, thunderstorms, etc., that cannot be used well
in large scale geostrophic analyses. Such effects are
present in the radiosonde observations, but tend to be
filtered out by the analysis with its built in geostrophic
modelling. But now, if the radiosonde data in part shows
geostrophically related residuals, the analysis will under
draw for them because the data error levels include
estimates of true measurement error as well as errors of
representativeness. This needs to be investigated further

along with improved multivariate quality control.

NMC’s forecast of this major storm got better as the system
moved over the ocean. Review of the quality control of ship
data by OPC in this event, shows that they are doing good
work. Further tests of the assimilation system should be

tried without their quality control.
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Fig. 29. ©NMC first-guess 300 mb heights for 0000 GMT
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with wind residuals.
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wind residuals.
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January, 1990, with raw ship data overlayed.



